Mean-variance portfolio selection based on a generalized BNS stochastic volatility model
نویسنده
چکیده
In this paper, we prove the global risk optimality of the hedging strategy of contingent claim, which is explicitly (or called semi-explicitly) constructed for an incomplete financial market with external risk factors of non-Gaussian Ornstein-Uhlenbeck (NGOU) processes. Analytical and numerical examples are both presented to illustrate the effectiveness of our optimal strategy. Our study establishes the connection between our financial system and existing general semimartingale based discussions by justifying required conditions. More precisely, there are three steps involved. First, we firmly prove the no-arbitrage condition to be true for our financial market, which is used as an assumption in existing discussions. In doing so, we explicitly construct the square-integrable density process of the variance-optimal martingale measure (VOMM). Second, we derive a backward stochastic differential equation (BSDE) with jumps for the mean-value process of a given contingent claim. The unique existence of adapted strong solution to the BSDE is proved under suitable terminal conditions including both European call and put options as special cases. Third, by combining the solution of the BSDE and the VOMM, we reach the justification of the global risk optimality for our hedging strategy.
منابع مشابه
The Tail Mean-Variance Model and Extended Efficient Frontier
In portfolio theory, it is well-known that the distributions of stock returns often have non-Gaussian characteristics. Therefore, we need non-symmetric distributions for modeling and accurate analysis of actuarial data. For this purpose and optimal portfolio selection, we use the Tail Mean-Variance (TMV) model, which focuses on the rare risks but high losses and usually happens in the tail of r...
متن کاملA Comparison of the Mean-Variance-Leverage Optimization Model and the Markowitz General Mean-Variance Portfolio Selection Model
The mean-variance-leverage (MVL) optimization model (Jacobs and Levy [2012, 2013]) tackles an issue not dealt with by the mean-variance optimization inherent in the general mean-variance portfolio selection model (GPSM) — that is, the impact on investor utility of the risks that are unique to using leverage. Relying on leverage constraints with a conventional GPSM, as is commonly done today, is...
متن کاملA stochastic model for project selection and scheduling problem
Resource limitation in zero time may cause to some profitable projects not to be selected in project selection problem, thus simultaneous project portfolio selection and scheduling problem has received significant attention. In this study, budget, investment costs and earnings are considered to be stochastic. The objectives are maximizing net present values of selected projects and minimizing v...
متن کاملMean-Variance Portfolio Selection with Random Parameters in a Complete Market
This paper concerns the continuous-time, mean-variance portfolio selection problem in a complete market with random interest rate, appreciation rates, and volatility coefficients. The problem is tackled using the results of stochastic linear-quadratic (LQ) optimal control and backward stochastic differential equations (BSDEs), two theories that have been extensively studied and developed in rec...
متن کاملGeneralized Mean-Variance Portfolio Selection Model with Regime Switching
In this paper we deal with a generalized multi-period mean-variance portfolio selection problem with the market parameters subject to Markov random regime switchings. We present necessary and sufficient conditions for obtaining an optimal control policy for this Markovian generalized multi-period mean-variance model, based on a recursive procedure. The analytical solution of our model provides ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Comput. Math.
دوره 88 شماره
صفحات -
تاریخ انتشار 2011